Dokaz formule za površinu kruga
- Преузми линк
- X
- Имејл адреса
- Друге апликације
Pozdrav svima. Danas ćemo dokazati formulu za površinu kruga. Kao dokazni metod koristićemo metod direktnog dokaza.
Teorema: Označimo sa \(P\) površinu kruga a sa \(r\) poluprečnik kruga. Tada važi jednakost: \(P=r^2\pi\)
Dokaz:
Jednačina kruga u Dekartovom pravouglom koordinatnom sistemu glasi \(x^2+y^2=r^2\). Odavde imamo da je \(y=\pm \sqrt{r^2-x^2}\) . Na osnovu geometrijske interpretacije određenog integrala sledi: \[P=\int\limits_{-r}^r \left(\sqrt{r^2-x^2}-\left(-\sqrt{r^2-x^2}\right)\right) \, dx\]
Dakle,\[P=\int\limits_{-r}^r 2\sqrt{r^2-x^2} \, dx\]\[P=\int\limits_{-r}^r 2\sqrt{r^2\left(1-\frac{x^2}{r^2}\right)} \, dx\]\[P=\int\limits_{-r}^r 2r\sqrt{1-\frac{x^2}{r^2}} \, dx\]
Uvedimo sad smenu \(x=r \cos \theta\) . Odavde imamo da je \(dx=-r\sin\theta d\theta\) . Tako da možemo pisati sledeću jednakost: \[P=-\int\limits_{\pi}^0 2r^2\sqrt{1-\frac{r^2\cos^2\theta}{r^2}}\sin\theta \, d\theta\]
Nakon uprošćavanja dobijamo: \[P=-\int\limits_{\pi}^0 2r^2\sqrt{1-\cos^2\theta}\sin\theta \, d\theta\]\[P=-\int\limits_{\pi}^0 2r^2\sin^2\theta \, d\theta\]\[P=-r^2\int\limits_{\pi}^0 2\sin^2\theta \, d\theta\]\[P=-r^2\int\limits_{\pi}^0 (1-\cos2\theta) \, d\theta\]\[P=-r^2\left(\int\limits_{\pi}^0 d\theta-\int\limits_{\pi}^0 \cos2\theta \, d\theta\right)\]Kako je \(\int\limits_{\pi}^0 \cos2\theta \, d\theta=0\) imamo da je: \[P=-r^2\int\limits_{\pi}^0 d\theta\]\[P=-r^2(0-\pi)\]\[P=r^2\pi\]
\(\blacksquare\)
- Преузми линк
- X
- Имејл адреса
- Друге апликације
Коментари
Постави коментар