Dokaz formule za \(\dfrac{\pi}{2\sqrt{3}}\)

 Pozdrav svima . Danas ćemo dokazati formulu za   \(\dfrac{\pi}{2\sqrt{3}}\). Kao dokazni metod koristićemo metod direktnog dokaza. Teorema 1:  \[\frac{\pi}{2\sqrt{3}}=\displaystyle\sum_{n=1}^{\infty}\frac{\chi(n)}{n}\]\[\text{gde je} \quad \chi(n)=\begin{cases} 1, & \text{if } n \equiv 1 \pmod{6}\\-1, & \text{if } n \equiv -1 \pmod{6}\\0, & \text{inače}\end{cases}\] Teorema 2: Imamo \[\frac{\pi}{2\sqrt{3}}=\frac{5 \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 19 \cdot 23 \cdot 29 \cdots}{6 \cdot 6 \cdot 12 \cdot 12 \cdot 18 \cdot 18 \cdot 24 \cdot 30 \cdots}\]izraz čiji su brojioci sekvenca neparnih prostih brojeva većih od \(3\) i čiji su imenioci parni brojevi koji su za jedan veći ili manji od odgovarajućih brojilaca. Dokaz: Na osnovu Teoreme 1 znamo da je \[\frac{\pi}{2\sqrt{3}}=1-\frac{1}{5}+\frac{1}{7}-\frac{1}{11}+\frac{1}{13}-\frac{1}{17}+\frac{1}{19}-\cdots\] takođe imamo \[\frac{1}{5} \cdot \frac{\pi}{2\sqrt{3}}=\frac{1}{5}-\frac{1}{25}+\frac{1}{35}-\fra...

Dokaz da je koren iz 2 iracionalan broj

Pozdrav svima. Danas ćemo dokazati da je \(\sqrt{2}\) iracionalan broj. Kao dokazni metod koristićemo metod kontradikcije. Ovaj dokaz je prvi izveo grčki filozof Aristotel.

Teorema: \(\sqrt{2}\) je iracionalan broj.

Dokaz:

Pretpostavimo da je \(\sqrt{2}\) racionalan broj. Tada \(\sqrt{2}\) možemo zapisati u obliku \( \frac{p}{q} \) gde su \( p \)  i \( q\) uzajamno prosti  celi brojevi takvi da \(q \neq 0\). Primetimo da kako je \( \frac{p}{q} \) nesvodljiv razlomak \( p \) i \( q \) ne mogu istovremeno biti parni inače razlomak ne bi bio nesvodljiv.

Iz jednakosti \(\sqrt{2}=\frac{p}{q}\) sledi da je \(2=\frac{p^2}{q^2}\) odnosno \( p^2=2q^2\) . Dakle \(p^2\) je paran broj odakle sledi da je \(p\) takođe paran broj pa možemo broj \(p\) zapisati u obliku \(p=2k\) gde je \(k\) celi broj. 

Dakle, imamo da je \( (2k)^2=2q^2\) tj. \( 4k^2=2q^2\), odnosno \( q^2=2k^2\). Iz poslednje jednakosti zaključujemo da je \(q^2\) paran broj, pa je samim tim i \( q\) paran broj.

Pokazali smo da su \(p\) i \(q\) parni brojevi što je u kontradikciji sa pretpostavkom da je \( \frac{p}{q} \) nesvodljiv razlomak. Dakle, polazna pretpostavka da je \(\sqrt{2}\) racionalan broj nije tačna, što znači da je \(\sqrt{2}\) iracionalan broj.

\(\blacksquare\)

Коментари

Популарни постови са овог блога

Dokaz da je koren iz prostog broja iracionalan broj

Dokaz da je centralni ugao kruga jednak dvostrukom odgovarajućem periferijskom uglu

Dokaz formule za \(\dfrac{\pi}{2\sqrt{3}}\)