Dokaz formule za \(\dfrac{\pi}{2\sqrt{3}}\)

 Pozdrav svima . Danas ćemo dokazati formulu za   \(\dfrac{\pi}{2\sqrt{3}}\). Kao dokazni metod koristićemo metod direktnog dokaza. Teorema 1:  \[\frac{\pi}{2\sqrt{3}}=\displaystyle\sum_{n=1}^{\infty}\frac{\chi(n)}{n}\]\[\text{gde je} \quad \chi(n)=\begin{cases} 1, & \text{if } n \equiv 1 \pmod{6}\\-1, & \text{if } n \equiv -1 \pmod{6}\\0, & \text{inače}\end{cases}\] Teorema 2: Imamo \[\frac{\pi}{2\sqrt{3}}=\frac{5 \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 19 \cdot 23 \cdot 29 \cdots}{6 \cdot 6 \cdot 12 \cdot 12 \cdot 18 \cdot 18 \cdot 24 \cdot 30 \cdots}\]izraz čiji su brojioci sekvenca neparnih prostih brojeva većih od \(3\) i čiji su imenioci parni brojevi koji su za jedan veći ili manji od odgovarajućih brojilaca. Dokaz: Na osnovu Teoreme 1 znamo da je \[\frac{\pi}{2\sqrt{3}}=1-\frac{1}{5}+\frac{1}{7}-\frac{1}{11}+\frac{1}{13}-\frac{1}{17}+\frac{1}{19}-\cdots\] takođe imamo \[\frac{1}{5} \cdot \frac{\pi}{2\sqrt{3}}=\frac{1}{5}-\frac{1}{25}+\frac{1}{35}-\fra...

Dokaz da se prirodan broj može izraziti kao proizvod prostih brojeva

Pozdrav svima. Danas ćemo dokazati da se svaki prirodan broj veći od \(1\) može izraziti kao proizvod prostog broja i jedinice ili kao proizvod više prostih brojeva. Kao dokazni metod koristićemo metod matematičke indukcije.

Teorema: Neka je \(n\) prirodan broj veći od \(1\). Tada \(n\) može da se izrazi kao proizvod jednog prostog broja i jedinice ili kao proizvod više prostih brojeva. 

Dokaz:

Primetimo da ukoliko je \(n\) prost broj tvrdnja je automatski dokazana jer svaki broj može da se zapiše kao proizvod tog broja i jedinice.

1. Baza indukcije (n=2)

Kako je \(2\) prost broj tvrdnja je automatski dokazana.

2. Induktivna hipoteza (n=m)

Pretpostavimo da važi: 

\(\forall k \in \mathbb{N} , \quad 2 \le k \le m \) , \(k\) se može izraziti kao proizvod jednog prostog broja i jedinice ili kao proizvod više prostih brojeva. 

3. Induktivni korak (n=m+1)

Na osnovu pretpostavke iz drugog koraka dokažimo da važi:

\(\forall k \in \mathbb{N} , \quad 2 \le k \le m+1 \) , \(k\) se može izraziti kao proizvod jednog prostog broja i jedinice ili kao proizvod više prostih brojeva. 

Za sve \(k\)-ove manje od \(m+1\) istinitost tvrdnje automatski sledi iz induktivne hipoteze. Razmotrimo sada slučal kada je \(k=m+1\). Ukoliko je \(m+1\) prost broj tvrdnja je automatski dokazana. U suprotnom \(m+1\) je složen broj i može da se izrazi u obliku \(m+1=pq\) , gde su \(p\) i \(q\) prirodni brojevi takvi da \(2 \le p <m+1\) i \(2 \le q <m+1\) , tj. \(2 \le p \le m\) i \(2 \le q \le m\) . Kako prema induktivnoj hipotezi oba broja \(p\) i \(q\) mogu da se izraze kao proizvodi prostih brojeva ili proizvodi prostog broja i jedinice to isto važi i za broj \(m+1\) .

\(\blacksquare\)

Коментари

Популарни постови са овог блога

Dokaz da je koren iz prostog broja iracionalan broj

Dokaz da je centralni ugao kruga jednak dvostrukom odgovarajućem periferijskom uglu

Dokaz formule za \(\dfrac{\pi}{2\sqrt{3}}\)