Dokaz da se prirodan broj može izraziti kao proizvod prostih brojeva

Pozdrav svima. Danas ćemo dokazati da se svaki prirodan broj veći od \(1\) može izraziti kao proizvod prostog broja i jedinice ili kao proizvod više prostih brojeva. Kao dokazni metod koristićemo metod matematičke indukcije. Teorema: Neka je \(n\) prirodan broj veći od \(1\). Tada \(n\) može da se izrazi kao proizvod jednog prostog broja i jedinice ili kao proizvod više prostih brojeva.  Dokaz: Primetimo da ukoliko je \(n\) prost broj tvrdnja je automatski dokazana jer svaki broj može da se zapiše kao proizvod tog broja i jedinice. 1. Baza indukcije (n=2) Kako je \(2\) prost broj tvrdnja je automatski dokazana. 2. Induktivna hipoteza (n=m) Pretpostavimo da važi:  \(\forall k \in \mathbb{N} , \quad 2 \le k \le m \) , \(k\) se može izraziti kao proizvod jednog prostog broja i jedinice ili kao proizvod više prostih brojeva.  3. Induktivni korak (n=m+1) Na osnovu pretpostavke iz drugog koraka dokažimo da važi: \(\forall k \in \mathbb{N} , \quad 2 \le k \le m+1 \) , \(k\) se može izraziti

Dokaz formule za n-ti izvod prirodnog logaritma

Pozdrav svima. Danas ćemo dokazati formulu za n-ti izvod prirodnog logaritma. Kao dokazni metod koristićemo metod matematičke indukcije.

Teorema: N-ti izvod funkcije \(\ln(x)\) za \(n \ge 1\) je dat formulom: \[\frac{\mathrm{d}^n}{\mathrm{d}x^n}\ln(x)=\frac{(n-1)!(-1)^{n-1}}{x^n}\]

Dokaz:

1. Baza indukcije (n=1)

\[\frac{\mathrm{d}}{\mathrm{d}x}\ln(x)=\frac{(1-1)!(-1)^{1-1}}{x^1}\]\[\frac{1}{x}=\frac{(0)!(-1)^{0}}{x}\]\[\frac{1}{x}=\frac{1}{x}\]

2. Induktivna hipoteza (n=m)

Pretpostavimo da važi:

\[\frac{\mathrm{d}^m}{\mathrm{d}x^m}\ln(x)=\frac{(m-1)!(-1)^{m-1}}{x^m}\]

3. Induktivni korak (n=m+1)

Koristeći pretpostavku iz drugog koraka dokažimo da važi:

\[\frac{\mathrm{d}^{m+1}}{\mathrm{d}x^{m+1}}\ln(x)=\frac{m!(-1)^{m}}{x^{m+1}}\]

Dakle,

\[\frac{\mathrm{d}^{m+1}}{\mathrm{d}x^{m+1}}\ln(x)=\frac{\mathrm{d}}{\mathrm{d}x}\left(\frac{\mathrm{d}^m}{\mathrm{d}x^m}\ln(x)\right)=\]\[\frac{\mathrm{d}}{\mathrm{d}x}\left(\frac{(m-1)!(-1)^{m-1}}{x^m}\right)=\]\[\frac{\frac{\mathrm{d}}{\mathrm{d}x}\left((m-1)!(-1)^{m-1}\right)\cdot x^m-\left((m-1)!(-1)^{m-1}\right)\cdot \frac{\mathrm{d}}{\mathrm{d}x}x^m}{x^{2m}}=\]\[\frac{-(m-1)!(-1)^{m-1}mx^{m-1}}{x^{2m}}=\]\[\frac{m(m-1)!(-1)^mx^{m-1}}{x^{2m}}=\]\[\frac{m!(-1)^m}{x^{2m-m+1}}=\]\[\frac{m!(-1)^m}{x^{m+1}}\]

\(\blacksquare\)

Коментари

Популарни постови са овог блога

Dokaz da je koren iz 2 iracionalan broj

Dokaz da je koren iz prostog broja iracionalan broj

Algebarski dokaz Pitagorine teoreme