Dokaz formule za n-ti izvod prirodnog logaritma
- Преузми линк
- X
- Имејл адреса
- Друге апликације
Pozdrav svima. Danas ćemo dokazati formulu za n-ti izvod prirodnog logaritma. Kao dokazni metod koristićemo metod matematičke indukcije.
Teorema: N-ti izvod funkcije \(\ln(x)\) za \(n \ge 1\) je dat formulom: \[\frac{\mathrm{d}^n}{\mathrm{d}x^n}\ln(x)=\frac{(n-1)!(-1)^{n-1}}{x^n}\]
Dokaz:
1. Baza indukcije (n=1)
\[\frac{\mathrm{d}}{\mathrm{d}x}\ln(x)=\frac{(1-1)!(-1)^{1-1}}{x^1}\]\[\frac{1}{x}=\frac{(0)!(-1)^{0}}{x}\]\[\frac{1}{x}=\frac{1}{x}\]
2. Induktivna hipoteza (n=m)
Pretpostavimo da važi:
\[\frac{\mathrm{d}^m}{\mathrm{d}x^m}\ln(x)=\frac{(m-1)!(-1)^{m-1}}{x^m}\]
3. Induktivni korak (n=m+1)
Koristeći pretpostavku iz drugog koraka dokažimo da važi:
\[\frac{\mathrm{d}^{m+1}}{\mathrm{d}x^{m+1}}\ln(x)=\frac{m!(-1)^{m}}{x^{m+1}}\]
Dakle,
\[\frac{\mathrm{d}^{m+1}}{\mathrm{d}x^{m+1}}\ln(x)=\frac{\mathrm{d}}{\mathrm{d}x}\left(\frac{\mathrm{d}^m}{\mathrm{d}x^m}\ln(x)\right)=\]\[\frac{\mathrm{d}}{\mathrm{d}x}\left(\frac{(m-1)!(-1)^{m-1}}{x^m}\right)=\]\[\frac{\frac{\mathrm{d}}{\mathrm{d}x}\left((m-1)!(-1)^{m-1}\right)\cdot x^m-\left((m-1)!(-1)^{m-1}\right)\cdot \frac{\mathrm{d}}{\mathrm{d}x}x^m}{x^{2m}}=\]\[\frac{-(m-1)!(-1)^{m-1}mx^{m-1}}{x^{2m}}=\]\[\frac{m(m-1)!(-1)^mx^{m-1}}{x^{2m}}=\]\[\frac{m!(-1)^m}{x^{2m-m+1}}=\]\[\frac{m!(-1)^m}{x^{m+1}}\]
\(\blacksquare\)
- Преузми линк
- X
- Имејл адреса
- Друге апликације
Коментари
Постави коментар