Dokaz formule za \(\dfrac{\pi}{2\sqrt{3}}\)

 Pozdrav svima . Danas ćemo dokazati formulu za   \(\dfrac{\pi}{2\sqrt{3}}\). Kao dokazni metod koristićemo metod direktnog dokaza. Teorema 1:  \[\frac{\pi}{2\sqrt{3}}=\displaystyle\sum_{n=1}^{\infty}\frac{\chi(n)}{n}\]\[\text{gde je} \quad \chi(n)=\begin{cases} 1, & \text{if } n \equiv 1 \pmod{6}\\-1, & \text{if } n \equiv -1 \pmod{6}\\0, & \text{inače}\end{cases}\] Teorema 2: Imamo \[\frac{\pi}{2\sqrt{3}}=\frac{5 \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 19 \cdot 23 \cdot 29 \cdots}{6 \cdot 6 \cdot 12 \cdot 12 \cdot 18 \cdot 18 \cdot 24 \cdot 30 \cdots}\]izraz čiji su brojioci sekvenca neparnih prostih brojeva većih od \(3\) i čiji su imenioci parni brojevi koji su za jedan veći ili manji od odgovarajućih brojilaca. Dokaz: Na osnovu Teoreme 1 znamo da je \[\frac{\pi}{2\sqrt{3}}=1-\frac{1}{5}+\frac{1}{7}-\frac{1}{11}+\frac{1}{13}-\frac{1}{17}+\frac{1}{19}-\cdots\] takođe imamo \[\frac{1}{5} \cdot \frac{\pi}{2\sqrt{3}}=\frac{1}{5}-\frac{1}{25}+\frac{1}{35}-\frac{1}{55}+\cdot

Dokaz formule za sumu prvih n Fibonačijevih brojeva

Pozdrav svima. Danas ćemo dokazati formulu za sumu prvih \(n\) Fibonačijevih brojeva . Kao dokazni metod koristićemo metod matematičke indukcije.

Teorema: \(\forall n \in \mathbb{N}_0 , \quad \displaystyle\sum_{j=0}^nF_j=F_{n+2}-1\)

Dokaz: 

1. Baza indukcije (n=0)

\[\displaystyle\sum_{j=0}^0F_j=F_{2}-1\]\[F_{0}=F_{2}-1\]\[0=1-1\]\[0=0\]

2. Induktivna hipoteza (n=m)

Pretpostavimo da važi: \[\displaystyle\sum_{j=0}^mF_j=F_{m+2}-1\]

3. Induktivni korak (n=m+1)

Na osnovu pretpostavke iz drugog koraka dokažimo da važi: \[\displaystyle\sum_{j=0}^{m+1}F_j=F_{m+3}-1\]

Dakle,

\[\displaystyle\sum_{j=0}^{m+1}F_j=\displaystyle\sum_{j=0}^{m}F_j+F_{m+1}=\]\[F_{m+2}-1+F_{m+1}=\]\[F_{m+1}+F_{m+2}-1=\]\[F_{m+3}-1\]

\(\blacksquare\)

Коментари

Популарни постови са овог блога

Dokaz da je koren iz prostog broja iracionalan broj

Dokaz da je koren iz 2 iracionalan broj

Dokaz formule za \(\dfrac{\pi}{2\sqrt{3}}\)