Dokaz da je skup prostih brojeva beskonačan

 Pozdrav svima. Danas ćemo dokazati da je skup prostih brojeva beskonačan. Kao dokazni metod koristićemo metod kontradikcije. Takođe ćemo upotrebiti teoremu francuskog matematičara Eduarda Lukasa. Teorema (Lukas): Svaki prost faktor Fermaovog broja \(F_n=2^{2^n}+1\) ; (\(n>1\)) je oblika \(k2^{n+2}+1\) . Teorema: Skup prostih brojeva je beskonačan. Dokaz: Pretpostavimo suprotno, da postoji samo konačno mnogo prostih brojeva i označimo najveći prosti broj sa \(p\) . Tada je \(F_p\) sigurno složen broj jer je \(F_p > p\) . Na osnovu Lukasove teoreme znamo da postoji prost broj \(q\) koji je oblika   \(k2^{p+2}+1\)  i koji deli broj \(F_p\). Ali \(q > p\) što je u kontradikciji sa polaznom pretpostavkom. Dakle, skup prostih brojeva je beskonačan . \(\blacksquare\)

Dokaz formule za sumu prvih n Fibonačijevih brojeva

Pozdrav svima. Danas ćemo dokazati formulu za sumu prvih \(n\) Fibonačijevih brojeva . Kao dokazni metod koristićemo metod matematičke indukcije.

Teorema: \(\forall n \in \mathbb{N}_0 , \quad \displaystyle\sum_{j=0}^nF_j=F_{n+2}-1\)

Dokaz: 

1. Baza indukcije (n=0)

\[\displaystyle\sum_{j=0}^0F_j=F_{2}-1\]\[F_{0}=F_{2}-1\]\[0=1-1\]\[0=0\]

2. Induktivna hipoteza (n=m)

Pretpostavimo da važi: \[\displaystyle\sum_{j=0}^mF_j=F_{m+2}-1\]

3. Induktivni korak (n=m+1)

Na osnovu pretpostavke iz drugog koraka dokažimo da važi: \[\displaystyle\sum_{j=0}^{m+1}F_j=F_{m+3}-1\]

Dakle,

\[\displaystyle\sum_{j=0}^{m+1}F_j=\displaystyle\sum_{j=0}^{m}F_j+F_{m+1}=\]\[F_{m+2}-1+F_{m+1}=\]\[F_{m+1}+F_{m+2}-1=\]\[F_{m+3}-1\]

\(\blacksquare\)

Коментари

Популарни постови са овог блога

Dokaz da je koren iz prostog broja iracionalan broj

Dokaz da je koren iz 2 iracionalan broj

Dokaz da se prirodan broj može izraziti kao proizvod prostih brojeva