Dokaz da se prirodan broj može izraziti kao proizvod prostih brojeva

Pozdrav svima. Danas ćemo dokazati da se svaki prirodan broj veći od \(1\) može izraziti kao proizvod prostog broja i jedinice ili kao proizvod više prostih brojeva. Kao dokazni metod koristićemo metod matematičke indukcije. Teorema: Neka je \(n\) prirodan broj veći od \(1\). Tada \(n\) može da se izrazi kao proizvod jednog prostog broja i jedinice ili kao proizvod više prostih brojeva.  Dokaz: Primetimo da ukoliko je \(n\) prost broj tvrdnja je automatski dokazana jer svaki broj može da se zapiše kao proizvod tog broja i jedinice. 1. Baza indukcije (n=2) Kako je \(2\) prost broj tvrdnja je automatski dokazana. 2. Induktivna hipoteza (n=m) Pretpostavimo da važi:  \(\forall k \in \mathbb{N} , \quad 2 \le k \le m \) , \(k\) se može izraziti kao proizvod jednog prostog broja i jedinice ili kao proizvod više prostih brojeva.  3. Induktivni korak (n=m+1) Na osnovu pretpostavke iz drugog koraka dokažimo da važi: \(\forall k \in \mathbb{N} , \quad 2 \le k \le m+1 \) , \(k\) se može izraziti

Dokaz formule za zbir prvih n prirodnih brojeva

Pozdrav svima. Danas ćemo dokazati formulu za zbir prvih \(n\) prirodnih brojeva. Kao dokazni metod koristićemo metod matematičke indukcije. Smatra se da su ovu formulu poznavali još i pitagorejci.

Teorema: Za bilo koji prirodni broj \(n\) važi sledeća formula: \[\displaystyle\sum_{k=1}^n k=\frac{n(n+1)}{2}\]

Dokaz:

1. Baza indukcije (n=1)

\[\displaystyle\sum_{k=1}^{1} k=\frac{1 \cdot (1+1)}{2}\]\[1=\frac{1 \cdot (2)}{2}\]\[1=\frac{2}{2}\]\[1=1\]

2. Induktivna hipoteza (n=m)

Pretpostavimo da važi:  \[\displaystyle\sum_{k=1}^m k=\frac{m(m+1)}{2}\]

3. Induktivni korak (n=m+1)

Koristeći pretpostavku iz drugog koraka dokažimo da važi: \[\displaystyle\sum_{k=1}^{m+1} k=\frac{(m+1)(m+2)}{2}\]

Dakle, \[\displaystyle\sum_{k=1}^{m+1} k=\displaystyle\sum_{k=1}^{m} k+m+1=\]\[\frac{m(m+1)}{2}+m+1=\]\[\frac{m^2+m+2m+2}{2}=\]\[\frac{m^2+2m+m+2}{2}=\]\[\frac{m(m+2)+(m+2)}{2}=\]\[\frac{(m+1)(m+2)}{2}\]

\(\blacksquare\)


Коментари

Популарни постови са овог блога

Dokaz da je koren iz 2 iracionalan broj

Dokaz da je koren iz prostog broja iracionalan broj

Algebarski dokaz Pitagorine teoreme