Dokaz formule za \(\dfrac{\pi}{2\sqrt{3}}\)
Pozdrav svima . Danas ćemo dokazati formulu za \(\dfrac{\pi}{2\sqrt{3}}\). Kao dokazni metod koristićemo metod direktnog dokaza. Teorema 1: \[\frac{\pi}{2\sqrt{3}}=\displaystyle\sum_{n=1}^{\infty}\frac{\chi(n)}{n}\]\[\text{gde je} \quad \chi(n)=\begin{cases} 1, & \text{if } n \equiv 1 \pmod{6}\\-1, & \text{if } n \equiv -1 \pmod{6}\\0, & \text{inače}\end{cases}\] Teorema 2: Imamo \[\frac{\pi}{2\sqrt{3}}=\frac{5 \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 19 \cdot 23 \cdot 29 \cdots}{6 \cdot 6 \cdot 12 \cdot 12 \cdot 18 \cdot 18 \cdot 24 \cdot 30 \cdots}\]izraz čiji su brojioci sekvenca neparnih prostih brojeva većih od \(3\) i čiji su imenioci parni brojevi koji su za jedan veći ili manji od odgovarajućih brojilaca. Dokaz: Na osnovu Teoreme 1 znamo da je \[\frac{\pi}{2\sqrt{3}}=1-\frac{1}{5}+\frac{1}{7}-\frac{1}{11}+\frac{1}{13}-\frac{1}{17}+\frac{1}{19}-\cdots\] takođe imamo \[\frac{1}{5} \cdot \frac{\pi}{2\sqrt{3}}=\frac{1}{5}-\frac{1}{25}+\frac{1}{35}-\frac{1}{55}+\cdot